
LECTURE 30

COMMUNICATION IN MACH

Distributed Operating System

Communication in Mach

 The basis of all communication in Mach is a kernel
data structure called a port.

 When a thread in one process wants to
communicate with a thread in another process, the
sending thread writes the message to the port and
the receiving thread takes it out.

 Each port is protected to ensure that only
authorized processes can send it and receive from
it.

 Ports support unidirectional communication. A port
that can be used to send a request from a client to
a server cannot also be used to send the reply
back from the server to the client. A second port is
needed for the reply.

Distributed Operating System

A Mach port

Message queue

Current message count

Maximum messages

Port set this port belongs to

Counts of outstanding capabilities

 Capabilities to use for error reporting

Queue of threads blocked on this port

Pointer to the process holding the RECEIVE capability

Index of this port in the receiver’s capability list

Pointer to the kernel object

Miscellaneous items
Distributed Operating System

Message passing via a port

port

Sending

thread

Receiving thread

Kernel

send receive

Distributed Operating System

Capabilities

1

2

3

4

1

2

3

4

Port

X

Port

Y

A B

process
thread

Capability list Capability with

SEND right

Capability

with RECEIVE

right kernel

Distributed Operating System

Primitives for Managing Ports

Allocate Create a port and insert its capability in the capability list

Destroy Destroy a port and remove its capability from the list

Deallocate Remove a capability from the capability list

Extract_right Extract the n-th capability from another process

Insert_right Insert a capability in another process’ capability list

Move_member Move a capability into a capability set

Set_qlimit Set the number of messages a port can hold

Distributed Operating System

Sending and Receiving

Messages
 Mach_msg(&hdr, options, send_size, rcv_size, rcv_port, timeout,

notify_port);

 The first parameter, hdr, is a pointer to the message to be sent or to
the place where the incoming message is put, or both.

 The second parameter, options, contains a bit specifying that a
message is to be sent, and another one specifying that a message is
to be received. Another bit enables a timeout, given by the timeout
parameter. Other bits in options allow a SEND that cannot complete
immediately to return control anyway, with a status report being sent
to notify_port later.

 The send_size and rcv_size parameters tell how large the outgoing
message is and how many bytes are available for storing the
incoming message, respectively.

 Rcv_port is used for receiving messages. It is the capability name of
the port or port set being listened to.

Distributed Operating System

The Mach message format

Message size

Capability index for destination port

Capability index for reply port

Message kind

Function code

Descriptor 1

Data field 1

Descriptor 2

Data field 2

Reply rights Dest. rights Complex/Simple

Header

Message

body

Not examined

by the

kernel

Distributed Operating System

Complex message field

descriptor

Data field size

In bits

Data field type Number of

in the data field

Bits 1 1 1 1 12 8 8

Bit

Byte

Unstructured word

Integer(8,16,32 bits)

Character

32 Booleans

Floating point

String

Capability

0: Out-of-line data present

1: No out-of-line data

0: Short form descriptor

1: Long form descriptor

0: Sender keeps out-of-line data

1: Deallocate out-of-line data from sender

Distributed Operating System

The Network Message Server

 Message transport from the client to the server requires five
steps:

 1. The client sends a message to the server’s proxy port.

 2. The network message server gets this message.

 3. The network message server looks up the local port in a
table that maps proxy ports onto network ports. Once the
network port is known, the network message server looks up
its location in other tables. It then constructs a network
message containing the local message and sends it over the
LAN to the network message server on the server’s machine.
When the remote network message server gets the message,
it looks up the network port number contained in it and maps
it onto a local port number.

 4. The remote network message server writes the message to
the local port just looked up.

 5. The server reads the message from the local port and
carries out the request.

Distributed Operating System

NMS Cont..

C NMS C NMS

1 2 4 5

LAN

4 216

Local Network
Table mapping

between local ports

and network ports

7 216

Local Network

Machine A Machine B

3

Distributed Operating System

ASSIGNMENT

 Explain the communication process in

distributed operating system.

Distributed Operating System

